A Rice Plastidial Nucleotide Sugar Epimerase Is Involved in Galactolipid Biosynthesis and Improves Photosynthetic Efficiency

نویسندگان

  • Chunlai Li
  • Yiqin Wang
  • Linchuan Liu
  • Yingchun Hu
  • Fengxia Zhang
  • Sod Mergen
  • Guodong Wang
  • Michael R. Schläppi
  • Chengcai Chu
چکیده

Photosynthesis is the final determinator for crop yield. To gain insight into genes controlling photosynthetic capacity, we selected from our large T-DNA mutant population a rice stunted growth mutant with decreased carbon assimilate and yield production named photoassimilate defective1 (phd1). Molecular and biochemical analyses revealed that PHD1 encodes a novel chloroplast-localized UDP-glucose epimerase (UGE), which is conserved in the plant kingdom. The chloroplast localization of PHD1 was confirmed by immunoblots, immunocytochemistry, and UGE activity in isolated chloroplasts, which was approximately 50% lower in the phd1-1 mutant than in the wild type. In addition, the amounts of UDP-glucose and UDP-galactose substrates in chloroplasts were significantly higher and lower, respectively, indicating that PHD1 was responsible for a major part of UGE activity in plastids. The relative amount of monogalactosyldiacylglycerol (MGDG), a major chloroplast membrane galactolipid, was decreased in the mutant, while the digalactosyldiacylglycerol (DGDG) amount was not significantly altered, suggesting that PHD1 participates mainly in UDP-galactose supply for MGDG biosynthesis in chloroplasts. The phd1 mutant showed decreased chlorophyll content, photosynthetic activity, and altered chloroplast ultrastructure, suggesting that a correct amount of galactoglycerolipids and the ratio of glycolipids versus phospholipids are necessary for proper chloroplast function. Downregulated expression of starch biosynthesis genes and upregulated expression of sucrose cleavage genes might be a result of reduced photosynthetic activity and account for the decreased starch and sucrose levels seen in phd1 leaves. PHD1 overexpression increased photosynthetic efficiency, biomass, and grain production, suggesting that PHD1 plays an important role in supplying sufficient galactolipids to thylakoid membranes for proper chloroplast biogenesis and photosynthetic activity. These findings will be useful for improving crop yields and for bioenergy crop engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galactose Biosynthesis in Arabidopsis Genetic Evidence for Substrate Channeling from UDP-D-Galactose into Cell Wall Polymers

The biosynthesis of plant cell wall polysaccharides requires the concerted action of nucleotide sugar interconversion enzymes, nucleotide sugar transporters, and glycosyl transferases. How cell wall synthesis in planta is regulated, however, remains unclear. The root epidermal bulger 1 (reb1) mutant in Arabidopsis thaliana is partially deficient in cell wall arabinogalactan-protein (AGP), indic...

متن کامل

Prediction of the active-site structure and NAD(+) binding in SQD1, a protein essential for sulfolipid biosynthesis in Arabidopsis.

Sulfolipids of photosynthetic bacteria and plants are characterized by their unique sulfoquinovose headgroup, a derivative of glucose in which the 6-hydroxyl group is replaced by a sulfonate group. These sulfolipids have been discussed as promising anti-tumor and anti-HIV therapeutics based on their inhibition of DNA polymerase and reverse transcriptase. To study sulfolipid biosynthesis, in par...

متن کامل

Plastidial Folate Prevents Starch Biosynthesis Triggered by Sugar Influx into Non-Photosynthetic Plastids of Arabidopsis.

Regulation of sucrose-starch interconversion in plants is important to maintain energy supplies necessary for viability and growth. Arabidopsis mutants were screened for aberrant responses to sucrose to identify candidates with a defect in the regulation of starch biosynthesis. One such mutant, fpgs1-4, accumulated substantial amounts of starch in non-photosynthetic cells. Dark-grown mutant see...

متن کامل

The role of diglycosyl lipids in photosynthesis and membrane lipid homeostasis in Arabidopsis.

The galactolipid digalactosyldiacylglycerol (DGD) is an abundant thylakoid lipid in chloroplasts. The introduction of the bacterial lipid glucosylgalactosyldiacylglycerol (GGD) from Chloroflexus aurantiacus into the DGD-deficient Arabidopsis (Arabidopsis thaliana) dgd1 mutant was previously shown to result in complementation of growth, but photosynthetic efficiency was only partially restored. ...

متن کامل

Correlation of Activities of the Enzymes a-Phosphoglucomutase, UDP-Galactose 4-Epimerase, and UDP-Glucose Pyrophosphorylase with Exopolysaccharide Biosynthesis by Streptococcus thermophilus LY03

The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and gluco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2011